A Novel Redesign of the Blockchain

Solving the Challenges of Miner Extractable Value,
Front-running Attacks, and Transaction Throughput
through Separation of Concerns and Duties.

Adit Patel Theresa Garcia

August 27, 2021

Abstract

‘We propose a novel blockchain to solve the primary issues inherent to
extant blockchains. Our proposal allows transactions at scale, arbitrarily
complex contract execution with self-optimizing timeouts, and drastically
limits conflicts of interest by segregating duties among three specialized
nodes, each responsible for a mutually exclusive, collectively exhaustive
portion of the transaction lifecycle. We achieve our goals by utilizing
hashed transaction information both in the mempool and during mining
operations by a network of specialized "mining nodes". These hashed
ledger entries in a mined block are then appended and executed by a
separate stand-alone network of "clearing nodes" that resolve the block.
Finally, a network of "commit nodes" orchestrates the whole process
and is responsible for committing any new additions to the blockchain.
Each of these networks is fully decentralized and has been constructed
to ensure there are no exploitable conflicts of interest. We achieve this
while allowing network participants the ability to specialize into a role
best suited for their system architecture and hardware.

Contents

1 Current Landscape and Challenges 3
1.1 A Brief Summary of the Current Blockchain Mining Process . . . 3
1.2 Current Challenges 8

2 Proposed Solution 10
2.1 The Altered Mining Process 12
2.2 The Clearing Window 16
2.3 The New Clearing Function 18
2.4 Committing e e 20
2.5 Segregation of Duties and Specialization 22

3 Summary of Advantages, Limitations, and Competitor Solutions 24

3.1 Proposal Advantages o 24
3.2 Proposal Limitations 0L, 25
3.3 Competitive Solutions, 25
4 Contact 26

1 Current Landscape and Challenges

The advent of the blockchain has created entirely new frameworks and
possibilities for interacting across networks in a trust-less, transparent, and
decentralized manner. It’s continued development and the exploration of its
use-cases has led to the creation of Decentralized Exchanges (DEXs). These
novel exchanges allow users to transact directly with one another, removing the
need for a central authority or market maker. However, the transparent nature
of the mempool enables malicious actors to execute attacks such as front-running
trades on these DEXs. Front-running is an attack where a user gains access to
privileged knowledge, such as the intention to enter a trade, and executes a
similar trade before the victim, causing them to pay inflated prices which the
attacker profits from. Front-running and its effects are becoming more apparent
on DEXs and are costing users hundreds of millions of dollars per month.

Today, this has fully developed into sharp fights on the blockchain where
arbitrage bots, front-running bots, and miners all compete to claim a piece of
the potential profits from these attacks. Many solutions have been raised, but as
they cannot change the fundamental nature of the blockchain, none have been
100% effective.

1.1 A Brief Summary of the Current Blockchain Mining
Process

The fundamental logic and operations of a blockchain haven’t significantly
changed since originally being implemented by Satoshi Nakamoto. Here is a
visual recap of this process.

A user wishing to transfer money, make a trade, or buy an NFT creates a
new transaction object.

https://arxiv.org/pdf/2009.14021.pdf
https://arxiv.org/pdf/1902.05164.pdf
https://arxiv.org/pdf/1904.05234.pdf

1.) A User Generates
a Transaction Object

—

User

Public Information

* Public Key

« Transaction Destination
» Transaction Amount

» Sender Address

» Gas/Fee Bid

* Timestamp

Private Information
« Private Key

from: "OxEA674fdDe714{d979de3EdAFOF56AA9716B898ec8",
to: "0xac03bb73b6a9e108530aff4df5077c2b3d481e5a",
gasLimit: "21000",

maxFeePerGas: "300"

maxPriorityFeePerGas: "10"

nonce: "0",

value: "10000000000",

v 2.) A User Signs this Transaction Object using their private key v

{
“jsonrpe™: '2.0%,
"id": 2,

“result”: {
"raw":

" {

“nonce": "0x0",

“maxFeePerGas": "0x1234",
“maxPriorityFeePerGas": "0x1234",
“gas": "0x55555",

1 1ab8b20e",
704971491663",

Figure 1: A user generates and signs a transaction object.

There are a few notable elements to this transaction object.

First, it is

signed by the users private key and can only be decoded by their public key,
thus proving their identity. Second, once decoded, all of the details are stored
in plain-text, meaning it is public for anyone to see. This detailed information
includes 2 important fields; the amount and the recipient address.

After initialization and signing, this transaction object is transmitted to the

mempool.

{
"jsonrpc": "2.0",
"id": 2,
"result": {
"raw":

Mempool

"0xf88380018203339407a565b7ed7d7a678680a4c162885bedbb695fe080a4440
1a6e4000
01226a0223a7c9bcf5531 70821838 c322e97cc5c7f71ab
8b20ea02aadeebb34b45bb15bc42d9c09de4a6754e7000908da72d48cc7704971
491663",
"tx": {

"nonce": "0x0",

"maxFeePerGas": "0x1234",

"maxPriorityFeePerGas": "0x1234",

"gas": "0x55555",

"to": "0x07a565b7ed7d7a678680a4c162885bedbb695fe0",

"value": "0x1234",

"input": "Oxabcd",

"v": "0x26",

r:
"0x223a7c9bcf5531c99bebea7082183816eb20cfeObbc322e97cc5c7f71ab8b20e”,

"s":
"0x2aadee6b34b45bb15bc42d9c09de4a6754e7000908da72d48cc770497149166
3",

"hash":
"Oxeba2df809e7a612a0a0d444ccfa5c839624bdc00dd29e3340d46df3870f8a30e"

}

}
}

3.) The Transaction
Enters the Mempool

—

Transaction 2

Transaction 5

——/

Figure 2: The unconfirmed transaction is transmitted to the mempool where everyone can
view the actions of the the user.

Here in the mempool, all transactions are public including their details.
A malicious actor monitoring the mempool can immediately take action once
they find an attractive target, e.g. a user initiating a large transaction with a
decentralized exchanges’ smart contract.

Miners now select the transactions they wish to include in a block from the
mempool. Generally, an honest miner should choose the highest fees offered
first, but they are not obligated to. They are free to add whichever transaction
from the mempool in whatever order they wish to a block. The value of the
power to choose which transactions to include and in which order is termed
miner extractable value (MEV). By abusing this power freely, miners and bots
have the ability to generate hundreds of millions of dollars of profit with virtually
no risk or limitations.

Block 14

Transaction 1

Transaction 2

Transaction 3

Transaction 4

Transaction 5

Transaction 6

Transaction 7

Transaction 8

Nonce: 1910238012983

Prev Hash: abd3f9abf28a13c7b12a9837
Solution Hash: 000000ca98d1e2ffa36a8b9dd2f1

O
O
@]
O
O
@]
O
@]

Figure 3: Blocks have hashes that tie all of the blocks together in a chain and can be verified.
That’s because the hash of any block is generated from a combination of the transactions in
the block, the previous hash, and a mined nonce.

Transactions get added to the blockchain through this structure, a "block".
A block contains many transactions. In a proof-of-work blockchain, these transactions
are appended together with the hash from the previous block and a nonce to
generate a new hash. It is the responsibility of the miners to find a hash that
satisfies the current difficulty function. The difficulty comes from the number

of Os that must form the beginning digits of the hash.
Note: Extant blockchains refer to what we are calling the solution hash as

the block or block header hash. We refer to it as the solution hash as we’ll be
forming our block header hashes in a different way in our proposal.

Mempool Transaction 2 (Gwei 3) Transaction 4 (Gwei 1)
Transaction 1 (Gwei 5) Transaction 3 (Gwei 7) Transaction 5 (Gwei 9)

4.) The next block is mined

Block 14 - Block Hash: 128c9a3aff0a2abd9398 Block 15

o Transaction 1 o Transaction 5 (Gwei 9)
o Transaction 2 o Transaction 3 (Gwei 7)
o Transaction 3 o Transaction 1 (Gwei 5)
o Transaction 4 o Transaction 2 (Gwei 3)
o Transaction 5 o Transaction 4 (Gwei 1)
o Transaction 6

o Transaction 7 Nonce: ?

o Transaction 8 Prev Hash: 128c9a3aff0a2abd9398
Nonce: 1910238012983 Solution Hash: ?

Prev Hash: abd3f9abf28a13c7b12a9837

Solution Hash: 000000ca98d1e2ffa36a8b9dd2f1

Figure 4: To form the next block, the miners select transactions to include from the mempool
based on their bidded gas, and attempt to find a nonce that satisfies the difficulty.

Sticking with proof-of-work for the time being, miners guess nonces until the
a hash that satisfies the difficulty function is found. At that point, the node
broadcasts out the block to the network which verifies it and adds it to the
chain.

Mempoo' All Transactions in the
mempool are public
.

7

Nodes are simultaneously
responsible for:

Block 15 Block Hash - a101293b120dff7832 Selecting the transactions
o Transaction 1 (Gwei 9) and getting them into a
Transaction 2 (Gwei 7) / % block on the chain

Transaction 3 (Gwei 5)
Transaction 4 (Gwei 3)
Transaction 5 (Gwei 1)

O 0O 0O

Nonce: 102938120938091283

Prev Hash: 128c9a3aff0a2abd9398 Executing th
Solution Hash: 000000e9adff8324cac7b98b \ g transagzz:sn;gclufﬁng .

any are smart contracts

Figure 5: Once a Nonce is found, the miner broadcasts the new block, earning the
amount of gas bid multiplied by the amount of it has used. Important Note: The miner
also simultaneously executed all of the transactions, including smart contracts. In today’s
blockchain, mining and executing are combined functions both resolved immediately at the
time of mining.

We wish to draw attention to something very specific about this process.
Specifically the concept of "clearing". Clearing refers to the process of settling
transactions, trades and funds. In finance, it is an exceedingly important
process, so much so that the process is handled by a specialized intermediary,
termed a clearing house. These institutions are widely regarded as removing any
conflicts of interest and by performing clearing as a separate function, making
traditional financial markets more efficient.

When it comes to extant blockchains, all clearing is handled by the node at
the time it mines a new block. If there is a smart contract as part of the block,
no matter how complicated it is, it is executed by the node when it finishes
mining the block. Fundamentally, in the modern blockchain, the process of
"clearing", "committing" and "mining" are seen as a single function by most
blockchain implementations. This establishes a low upper bound on contract
complexity, block size, and resolution time.

https://web.stanford.edu/~duffie/DuffieZhu.pdf
https://web.stanford.edu/~duffie/DuffieZhu.pdf

1.2 Current Challenges

Extant blockchains face several challenges in the modern era. The three
we believe are the most pressing are the challenges of miner extractable value,
front-running attacks, and transaction throughput.

From Figure 4 above, you can see that miners have an incredibly broad
latitude when it comes to selecting and ordering the transactions in a block. By
changing the included transactions or their execution order, individual transactions
in that block can gain or lose significant amounts of value. Miner extractable
value, refers to the economic value of this power. Entire tokens have been created
to help miners directly auction this power to attackers or victims, and there are
proposals in the Ethereum community to make MEV auctions or MEVAs an
integral part of the network itself. It’s important to note that there is extensive
discourse on the subject and some believe that the cure of auctions is worse
than the disease. In either case, it is clear that MEV is a major challenge for
all extant blockchains and is a major limiting factor to efficient transactions on
decentralized exchanges.

Speaking of which, one of the most prominent uses of a complex smart
contract is the decentralized exchange, or "DEX". A decentralized exchange
maintains liquidity pools with automated market makers that are accessed
through smart contracts. The logistics of their operations are beyond the
scope of this paper. Essentially they are an ownerless exchange where users
can exchange one cryptocurrency for another. Our primary concern with them
is that similar to centralized or traditional exchanges, trades that are executed
first receive better pricing.

As an example, if a malicious agent identified that a bank was going to make
a large purchase of Apple stock, it would be possible to use that information to
generate a profit. All the malicious agent would have to do is purchase Apple
stock before the bank does, even if by microseconds. Their purchase would
cause the price to move up for when the bank buys. Our malicious agent can
sell immediately after the bank concludes its trade at an inflated price, pocketing
some of the banks money as a risk-free profit.

The challenge for decentralized exchanges in particular, is that these transactions,
while in the mempool, are unencrypted and may take minutes to execute.
Malicious bots can and do scan the mempool transactions for trading smart
contracts. If they identify a transaction heading for a decentralized exchange,
they can front run and back run the transaction in the same block by offering
fees slight above and slightly below the targeted transaction or even pay a
miner to build them such a block by splitting the profit. When the transaction
is incorporated into a block, the smart contract receives the malicious front-run
trade first. Immediately after, the victim’s order then executes at a highly
inflated price. The malicious actor then follows up with a back-run trade,

https://www.edennetwork.io/
https://www.edennetwork.io/
https://ethresear.ch/t/mev-auction-auctioning-transaction-ordering-rights-as-a-solution-to-miner-extractable-value/6788
https://ethresear.ch/t/mev-auction-auctioning-transaction-ordering-rights-as-a-solution-to-miner-extractable-value/6788
https://ethresear.ch/t/mev-auction-auctioning-transaction-ordering-rights-as-a-solution-to-miner-extractable-value/6788
https://ethresear.ch/t/mev-auctions-will-kill-ethereum/9060
https://ethresear.ch/t/mev-auctions-will-kill-ethereum/9060

pocketing a risk-free profit from the victim by forcing them to transact at an
artificially high price.

MY

) Victim submits
atransaction

Trade 1ETH

5.) The malicious actor profits from the victim’s trade.
for DAl 4.) Trades are

picked up from the Mempool
Block 12 Hash 3454
Trade 1 ETH
for DAI
e 81110 v Trade 1,000 ETH for DA
2)) Malicious actor - Execution price 1 ETH : 1 DAI
scans mempool Trade 1,000 v Trade 1 ETH for DAI
C—— ETH for DAI - Execution price 1ETH : 0.4 DAI
3) Malicious actor L v’ Trade DAI back to ETH
enters 2 trades - Execution price 1 DAI:1.01 ETH
Trade DAI
back to ETH
Trade 1,000 Gas Bid 09

ETH for DAI

Trade DAI
back to ETH

Ba

——

Figure 6: An Illustration of the logistics of a "Sandwich attack".

Today, there is a balance created by the high fixed fees assessed by the
blockchains. In an assessment of profitability, [the lower bound of transaction
size for a profitable attack was 15 ETH]|. However as technology advances and
transaction fees fall, the scope of viable targets will dramatically increase.

However, most blockchains have fundamental limits to transaction throughputs.

In the extant implementation, a single node, that is optimized solely for mining,
as that is how they win the right to mine a block, is responsible for mining,
clearing, and committing a block. This places a low upper bound on how large
and complex an individual block can be, as it still needs to be executed by
the mining node in a reasonable time. If a smart contract took 10 seconds to
execute, it would place undo strain on the mining node. In an effort to rectify
this, the clearing of an entire ethereum block is limited to an execution time
of 0.5-1.5 seconds on an average consumer CPU. This bounds the amount of
transactions a given block can contain. Increasing the block size would allow
more transactions, but would also make it difficult for a mining node to clear
all the transactions within a reasonable time.

https://arxiv.org/pdf/2009.14021.pdf
https://arxiv.org/pdf/2009.14021.pdf

2 Proposed Solution

When confronted with similar challenges, traditional financial institutions
developed an extensive infrastructure network and introduced separation of
concerns. A broker, exchange, clearinghouse and market maker all own clear
discrete parts of the transactions lifecycle, but none owns all of it. Our proposal
is an implementation of the full, traditional financial infrastructure in a decentralized
way to efficiently clear and settle transactions. We explain the philosophy
to implementing this infrastructure and separation of concerns in a following
subsection.

In order to avoid conflicts of interest, we also incorporate a decentralized
version of "Dark Pools". In traditional finance, these are liquidity pools that
obfuscate the nature of the transaction enabling large financial orders to be
completed without a malicious actor front running the trade. However, blockchains
are, by their nature, public, immutable ledgers. The transaction cannot itself
be encrypted as both parties need to verify each other’s credentials as well as
the integrity of the block chain.

In order to combat these malicious attacks and allow for efficient decentralized
exchanges, we propose a novel blockchain implementation that hashes the transaction
until it has been included into the blockchain along with clearing and committing
nodes that resolve the block. We have attempted to remain as true to the
original vision of Satoshi Nakamoto as possible and remain committed to the
transparent, immutable P2P ledger that they envisioned.

In summary, our proposed solution has two fundamental differences from
the current implementation of cryptocurrencies. First, transactions are hashed
by SHA256 before entering into the mempool, obfuscating the details of the
trade. Second, we introduce the doctrines of segregation of duty and separation
of concerns by creating three networks of specialized nodes, each responsible
for a separate portion of the lifecycle of a transaction with careful checks and
balances between them. We propose distinct ownership over what we believe
are the three fundamental stages of a transaction; mining (origination), clearing
(execution), and committing (closing).

10

[Extant Blockchains Mempool\

Adit pays
Theresa 6 ETH
—l Bid 6 Gwei R]
Adit pays Smart
Contract 40ETH
Bid 10 Gwei
Information in a Current Transaction Information in the Proposed Transaction
Public i Public
« Public Key Proposed Solution Mempool - Public Key
+ Transaction Destination - - « SHA256(Transaction
+ Transaction Amount Adit AC32 6 Gwei Destination, Transaction
« Sender Address Amount)
+ Gas/Fee Bid Adit DF93 10 Gwei « Sender Address
* Timestamp * Gas/Fee Bid
« Timestamp
Private
« Private Key Private

« Private Key
« Transaction Destination

« Transaction Amount

Figure 7: Our proposed changes to the mempool

Transaction Lifecycle Ownership

Extant Blockchains
The Mining Node/Validator

.
- o~

Origination Execution Closing

Mining Nodes Clearing Nodes Commit Nodes

Our Proposed Blockchain

Figure 8: Ownership over the Transaction Lifecycle.

11

2.1 The Altered Mining Process

Let’s begin with the altered mining process. For this illustrative example
we are going to use the Ethereum blockchain as a generic reference. That is, a
proof-of-work block chain with gas fees. It is purely illustrative and our proposal
is agnostic of how new blocks are mined or fees are assessed. The logistics for
an end user and a miner are very similar to existing blockchain implementations
and our proposal can be adapted to either a proof-of-stake or a proof-of-work
blockchain.

Now let’s start with a user who wishes to initiate a transaction. As before,
they will need to construct a transaction object containing their address, public
key, and a fee bid.

Tx = {
to: "0Oxac03bb73b6a9e108530aff4df5077c2b3d481e5a",
value: "10000000000",
A User Generates gasLimit: "21000",
a Transaction
and it’s Hash First
_— tx_hash =
d92b21fb4364cf0a9b738ac09e09263144f3e7255cd3e7af289
5bdb1889fcbf9
User v A User Generates a Transaction Object using this SHA-256 v
Rt
. Sender Address d92b21fb4364cf0a9b738ac09e09263144f3e7255cd3e7af28
. Gas Bid 95bdb1889fcbf9,
« Timestamp maxFeePerGas: "300"
maxPriorityFeePerGas: "10"
Private Information nonce: "0",
« Private Key }
« Transaction Destination
* Transaction Amount

Gas Limit
A User Signs this Transaction Object using their Private Key as before

Figure 9: A user generates a transaction with the typical parameters, however this
transaction object is then hashed using the SHA256 algorithm. The user keeps the raw
details of the transaction secret and encrypts the transaction object containing the SHA256
hashed transaction details with their private key.

Note: For the sake of brevity and clarity in this and all other figures, we’ve simplified
operational details. As an example, the user would need to append a one-time nonce before
the transaction is hashed.

Traditionally, this transaction object includes the plain-text details of their
transaction. In our proposal, users instead use SHA256 to hash any sensitive
transaction details together. In this example, it’s the three details; the transaction
amount, the transaction destination, and the gas limit. This hash is what is
appended to the transaction object. The plain-text details are kept secret and
reserved by the user.

12

"raw":

s

"nonce": "0x0",

"tx_hash":
“d92b21fb4364cf0a9b

"maxFeePerGas": "0x1234",
"maxPriorityFeePerGas": "0x1234",

"0xf88380018203339407a565b7ed7d7a678680a4c162885bedbb695fe080a44401a6
©4001226
a0223a7c9bcf5531c99be5ea7082183816eb20cfeObbc322e97¢cc5¢7f71ab8b20eald2a
adee6b34b45bb15bc42d9c09de4a6754e7000908da72d48cc7704971491663",

"from": "OXEA674fdDe714fd979de3EdFOF56AA9716B898ec8",

144f3e7255cd3e7af2895bdb1889fcbf9”

Mempool

SHA256 Tx 1

SHA256 Tx 2

The Transaction
Enters the Mempool

—
SHA256 Tx 3

SHA256 Tx 4

SHA256 Tx 5

aaoad

Figure 10: The unconfirmed transaction is transmitted to the mempool.

The user signs this transaction object with their private key. This transaction
object still has in plain-text the gas bid, user address, and public key. With this
information, a mining node can still verify the identity of the user by confirming
that they do indeed hold the private/public key pairing and still prioritize which
transactions to include according to bids. The transactions the miner adds in
this block MUST be ordered by gas price followed by the transaction hash
in descending alphabetical order. If a user wishes to be assured of an early
placement in the block, they can change their transaction nonce to mine a low

transaction hash.

Mempool

SHA256 Tx 1

SHA256 Tx 2

SHA256 Tx 3

SHA256 Tx 4

SHA256 Tx 5

LT

Example 1

—

Example 2

—

"raw":
"0xf88380018203339407a565b7ed7d7a678680a4c162885bedbb695fe080a44401a6e4
0012262022
3a7c9bcf5531c99be5ea7082183816eb20cfeO0bbc322e97cc5c7f71ab8b20ea02aadee6
b34b45bb15bc42d9c09de4a6754e7000908da72d48cc7704971491663",

"tx": {

"nonce": "0x0",

"maxFeePerGas": "0x1234",

"maxPriorityFeePerGas": "0x1234",

"tx_hash": “ac6d78f24c242a00a0d56aad4d78596a6¢c8b97a967d4eadb1”

"raw":
"0xd56aad4d78596a6c8b97a967d4eadb12885bedbb695fe080a44401a6€4000000000
000122620223a7¢9bcf5
531c99be5ea7082183816eb20cfeObbc322e97c12312acdde123131ec98c23¢1290de3
81fe20a93c810a92b8a39b02e18c39e0ff128a30b91a29chbe38e1de20938",
"tx": {

"nonce": "0x0",

"maxFeePerGas": "0x1234",

"maxPriorityFeePerGas": "0x1234",

"tx_hash": “c1290de381fe20a93c810a92b8a39b02e18c39e0ff128a30b90”

Figure 11: Unconfirmed transactions in the mempool.

13

Now, the mining node, along with any agent accessing the mempool, isn’t
able to read the transaction payload as it is simply the SHA256 hash of the
transaction details. This forces miners to be agnostic when selecting which
transactions to mine into the next block.

SHA256 Tx 2 (Gwei 3)
SHA256 Tx 3(Gwei 7)

Mempool

SHA256 Tx 1 (Gwei 5)

SHA256 Tx 4 (Gwei 1)

Block 12 - Hash A213
v' SHA-256 - Cleared
- Appended Info
v' SHA-256 - Cleared
- Appended Info
o SHA-256 — Waiting

Nonce 123123
Solution Hash 0054

Block 13 - Hash 12B2
o SHA-256 - Waiting
o SHA-256 — Waiting

- Appended Info
o SHA-256 - Waiting

Nonce 09834
Solution Hash 0063
Commit Hash

Block 14 — Hash 9C21
o SHA-256 - Waiting
o SHA-256 — Waiting

- Appended Info
o SHA-256 - Waiting ?
Nonce 751923

Solution Hash 00C4
Commit Hash

Commit Hash

Figure 12: Miners only have access to the transaction hash.

Mining nodes now begin the process of mining blocks like usual. Here we
have a 14 block chain and the miners have just found the solution hash to
block 15. They are preparing to broadcast the block to the commit nodes for
committing. Before we go over that process, let’s cover the differences between
a traditional block and one from our blockchain.

Each Block has a block hash, which is the hash of

the ion hash appended with the i

hash of the block at the end of the clearing window,
for our example, that is block 12

4 These are not transaction objects with plain-text routing
Block 15 — Hash 657D details, but rather transaction objects with SHA256 hashes
o Transaction 1 SHA256 Information / These plain-text details of the transaction are separately
R : appended to this SHA256 transaction object.
Appended Information The SHA256 of this must EXACTLY match that
- Cleared of the ted "
o Transaction 2 SHA256 Inforrmath

- Waiting T————— T/ Transactions also have an associated status

Nonce: 1910238012983

Prev Hash: 0000009abf28a13c7b12a9837
Solution Hash: 000000ca98d1e2ffa36a8b9dd2f1
Commit Hash:

Each closed block also has a Commit Hash,
written when the block is closed
at the end of the clearing window

Figure 13: A block from our proposed blockchain.

There are a few key differences between our block and a traditional one.
First, each ledger entry is a SHA256 hash of a transaction, not plain-text
transaction details like other chains. Second, each ledger entry has two associated
fields; a status flag and optionally appended plain-text transaction details. The
hash of this plain-text transaction detail must match the hash of the ledger

14

entry in a valid block. We’ll cover statuses in a moment, but the block also
has one other field, a commit hash. We cover the commit process in the next
section, but for now know that this commit hash exists and can be validated
for all committed blocks. The block also has a traditional block hash as you
would find in any other blockchain however instead of being the solution hash,
it is the SHA256 of the solution hash appended to the commit hash from the
block at the end of our clearing window. This is why we had to define the term
solution hash as it no longer serves as our block hash.

Mempool SHA256 Tx 2 (Gwei 3)

Block 15 is being mined by incor

SHA256 Tx 4 (Gwei 1)
SHA256 Tx 5 (Gwei 9)

| based on fees

from the

Block 12 - Hash A213
v' SHA-256 - Cleared
- Appended Info
v' SHA-256 - Cleared
- Appended Info
< SHA-256 — Failed

Nonce 123123
Solution Hash 0054

Block 13 - Hash A213
o SHA-256 - Waiting
o SHA-256 — Waiting

- Appended Info
o SHA-256 - Waiting

Nonce 098345
Solution Hash 0063
Commit Hash

Block 14 - Hash A213
o SHA-256 - Waiting
o SHA-256 — Waiting

- Appended Info
o SHA-256 — Waiting

Nonce 751923
Solution Hash 00C4
Commit Hash

Block 15 — Hash 657D

o SHA-256 Tx 5 - Waiting
o SHA-256 Tx 3 - Waiting
o SHA-256 Tx 1 - Waiting

Nonce 234610
Solution Hash 00D5
Commit Hash

Commit Hash DFCD

Figure 14: Committing block 15 closes block 12. Here, in red, are transactions and hashes
assigned by the mining node. In purple are the transactions finalized and hashes assigned by
the commit node.

After a mining node mines this block, whether through proof-of-work or
proof-of-stake, it initiates the commit process by transmitting this new block
to the commit nodes’ network. We’ll detail the process of committing that is
performed by a commit node in a following section. For now, the relevant part
of that process is that these commit nodes verify and add this block to the
blockchain.

The newly added block at this point resembles a standard block from any
other chain except each transaction entry is a SHA256 hash with a status of
"waiting" instead of plain-text transaction data and the block currently has a
null commit hash.

However, these blocks are currently useless. No one can read them so while

they are immutably on the chain, the actual transaction hasn’t been cleared or
committed yet.

15

2.2 The Clearing Window

You might be wondering how we can now get the plain-text details to execute
the transaction.

After this newly created block is added to the blockchain and broadcast to
the network by the commit nodes, the wallet who initiated the transaction has
a window of time. We term this the "clearing window" and it is the amount of
time, measured in blocks, that a wallet has to confirm the actual details of the
transaction. If you are following the illustrative example, because the mining of
block 15 committed block 12, it is a 3 block window.

Mempool

SHA256 Tx 1 (Gwei 5)

SHA256 Tx 2 (Gwei 3)
SHA256 Tx 3(Gwei 7)

SHA256 Tx 4 (Gwei 1)
SHA256 Tx 5 (Gwei 9)

Block 12 - Hash A213
v SHA-256 - Cleared
- Appended Info
v SHA-256 - Cleared
- Appended Info
« SHA-256 — Failed

Nonce 123123
Solution Hash 0054

Block 13 - Hash A213
o SHA-256 - Waiting
o SHA-256 - Waiting

- Appended Info
o SHA-256 - Waiting

Nonce 09834
Solution Hash 0063
Commit Hash

Block 14 - Hash A213
o SHA-256 - Waiting
o SHA-256 - Waiting

- Appended Info
o SHA-256 - Waiting

Nonce 751923
Solution Hash 00C4
Commit Hash

Block 15 — Hash 657D

Nonce 234610
Solution Hash 00D5
Commit Hash

o SHA-256 Tx 5 - Waiting
o SHA-256 Tx 3 - Waiting
o SHA-256 Tx 1 — Waiting

Commit Hash DFCD

Figure 15: Up until block 15 was mined, users could have appended their plain-text
transaction details to blocks 12, 13 and 14. After block 15 is mined, users can now append
their transactions to block 13, 14 and 15.

Confirming the details is simple, the user submits the plain-text transaction
details and nonce. The network calculates the SHA256 hash of the included
transaction information. If the network confirms this value matches a SHA256
hash in an open block, the raw transaction data is appended to that block under
the hash. If the user does not broadcast the plain-text transaction details in
time, or does not have the funds to perform the transaction, the transaction
fails when the the block is committed. Note here that the user has already paid
their transaction fee to the miner when they were incorporated into a block. In
addition, there may be additional punitive measures taken if a user abuses this
functionality and consistently fails to append their details.

16

A User submits their Block 15 will be closed
plain-text transaction object when Block 18 is mined
once they are on-chain

Block 15 - Hash 657D Block 15 - Hash 657D

o SHA-256 Tx 5 - Waiting o SHA-256 Tx 5 - Waiting

o SHA-256 Tx 3 - Waiting o SHA-256 Tx 3 - Waiting

o SHA-256 Tx 1 — Waiting o SHA-256 Tx 1 — Waiting
—l —l - Appended Information

Nonce 234610

Solution Hash 00D5 Nonce 234610

Commit Hash Solution Hash 00D5

Commit Hash

Figure 16: Once on-chain, the user has a limited window to submit plain-text details. These
details are automatically checked and appended to the matching SHA256 and this block will
be closed when block 18 gets mined.

This incentivizes users to ensure they submit their plain-text transaction
details. We envision that for the bulk of users and smart contracts, this process
will be entirely automated either through an exchange or their smart wallet.

Revealing plain-text transaction details at this point is safe as the transaction
is now confirmed, on-chain, and is in no danger of being front-run. Even though
the transaction plain-text details have been appended, the block, with all its
transactions and smart contracts, still needs to be settled.

17

2.3 The New Clearing Function

Enter the clearing nodes. The job of these nodes is to clear, in the financial
sense, the blocks. They are responsible for listening for plain-text transactions,
verifying funds, executing any smart contracts, and clearing individual transactions.

Mempool

SHA256 Tx 1 (Gwei 5)

SHA256 Tx 2 (Gwei 3)

SHA256 Tx 3(Gwei 7)

SHA256 Tx 4 (Gwei 1)

SHA256 Tx 5 (Gwei 9)

Block 12 is closed by the commit node

Block 12 - Hash A213
v' SHA-256 - Cleared
- Appended Info
v SHA-256 - Cleared
- Appended Info
« SHA-256 - Failed

Nonce 123123
Solution Hash 0054

Block 13 - Hash A213
o SHA-256 - Waiting
v' SHA-256 - Cleared

- Appended Info
o SHA-256 - Waiting

Nonce 09834
Solution Hash 0063
Commit Hash

Block 14 - Hash A213
o SHA-256 - Waiting
o SHA-256 — Waiting

- Appended Info
o SHA-256 - Waiting

Nonce 751923
Solution Hash 00C4
Commit Hash

Block 15 — Hash 657D

o SHA-256 Tx 5 - Waiting
o SHA-256 Tx 3 - Waiting
o SHA-256 Tx 1 - Waiting

Nonce 234610
Solution Hash 00D5
Commit Hash

Commit Hash DFCD

Figure 17: It is the clearing nodes responsibility to clear the transactions efficiently and
in time. This means it’s responsible for settling transactions and executing revealed smart
contracts which can be of arbitrary complexity. Here, they are working on blocks 13, 14 and
15.

The clearing nodes know to begin their work when they receive and verify
a new block that was broadcast by the commit nodes. The clearing nodes can
immediately get to work clearing and settling all the transactions they can find
for which users have submitted plain-text data. They can’t officially commit
these transactions or smart contracts to the blockchain yet as that is only done
when the block closes and is the responsibility of the commit node network.
The process of committing is detailed in the next section.

The clearing nodes are incentivized to make sure they complete the execution
for appended info as they receive transaction fees based on the computational
effort of the smart contracts and number of cleared transactions. They are also
competing for speed and efficiency as the most appended block that is first
transmitted to the commit node wins. That is why they are also the nodes
responsible for listening on the network for appended information from users.

A clearing node doesn’t have to be a single system as we will explain in
the "Separation of Duties and Specialization" sub section. However, they must
be able to quickly and efficiently clear the transactions in a block including
executing any smart contracts, which requires them to maintain an up-to date
full copy of the global database. If the node does not have a full copy of the
complete blockchain, they can retrieve a copy of the current committed global
database from the commit node network.

18

In order to have an unambiguous, decentralized timing system for users to
submit their information, clearing nodes are permitted to work on a block until
the commit nodes commit that block. At this point, any transaction that was
in the process of being cleared and any transactions in that block waiting for
matching plain-text data are failed and the clearing nodes move on to the next
block that needs to be cleared.

19

2.4 Committing

Committing is the process by which a newly mined block gets added to the
chain and the block at the end of the clearing window is executed and closed.
In a decentralized system, there is no single clock or transaction timestamp
that can be referenced or trusted for network consensus so we use the moment a
new block is mined and needs to be added to the block chain as the timing event.

We said before that, when a mining node mines a new block it submits it to
the commit node network, let’s go into detail about what that process involves.
The commit node network has 2 jobs. First, it maintains a copy of and consensus
on the current blockchain including its global database. Second, it’s responsible
for handling the committing process which is the only way changes can be made
to that blockchain.

Let’s describe in detail their functioning. At all times, a commit node is
listening to the entire network. From the clearing nodes, it is listening for
updates to any blocks that are currently in the clearing window. Anytime a
clearing node manages to append extra information to a block and clears an
additional transaction it signs this new block and transmits it to the commit
node. A commit node retains this cleared block until it receives another one.

At that point, the only way its retained cleared block is replaced is if a newly
submitted block has more transactions appended. This ensures that the block
retained by the commit node is from the first clearing node to clear a block as
much as possible given the plain-data submitted by users. If a commit node
replaces its block, it then broadcasts this new block to the network of its fellow
commit nodes. It can also broadcast it to a clearing node, if the clearing node
queries the commit node. This is to best ensure that the clearing nodes have in
memory, the most appended block from the first clearing node to fully clear it.

There is one other way it can replace its clearing block. With the complexity
of smart contracts, a clearing node can possibly lie about the output of the smart
contract. While it is their responsibility to clear the node including settling all
smart contracts, a clearing node can easily submit the correct appended info,
but then claim that a smart contract resolves as payment to an address it
controls instead. If any commit node receives a block from a clearing node
where there is a conflict in how smart contracts are ultimately settled, it is
now the responsibility of the commit node network to verify the smart contract.
The commit node network now needs to clear that transaction and punish the
malicious clearing node. In a proof of stake, this can be by garnishing some of
the clearing nodes tokens which becomes a reward distributed across the commit
node network. In order to prove which commit node acted maliciously, it can
demonstrate that the malicious block was signed by the clearing nodes private
key.

20

Block 12 - Hash A213 (\ Block 12 - Hash A213
v' SHA-256 — Cleared v' SHA-256 - Cleared

- Appended Info
v' SHA-256 - Cleared

- Appended Info

Commit Node v' SHA-256 - Cleared

- Appended Info _ . . - Appended Info
% SHA-256 - Waiting | Whenblock 15is received % SHA-256 - Failed
and validated, it;
Nonce 123123 Nonce 123123

1. Commits all block 12
transactions by changing
its global database

Solution Hash 0054
Commit Hash DFCD

Solution Hash 0054
Commit Hash

2. Assigns the commit hash
to block 12

Block 15 - Hash) Block 15 — Hash 657D

o SHA-256 Tx 5 - Waiting 3. Uses that along with the o SHA-256 Tx 5 - Waiting

o SHA-256 Tx 3 - Waiting solution hash to generate o SHA-256 Tx 3 - Waiting

. a block hash for block 15 L
o SHA-256 Tx 1 - Waiting and appends it to it's L | 0 SHA-256 Tx 1 - Waiting

chain
Nonce 234610 Nonce 234610
Solution Hash 00D5 k) Solution Hash 00D5
Commit Hash Commit Hash

Figure 18: The commit process involves committing block 12’s transactions, assigning a
block hash to the new block 15 and appending block 15 to the blockchain.

Commit nodes are also listening to the mining nodes. When a mining node
mines a new block, it is submitted to the commit nodes. The commit nodes
at this point must add the new block the blockchain and close the block at the
end of the clearing window. It does this in the following way, it first closes the
block at the end of the clearing window by "failing" all transactions that are
still waiting for plain-text data. These users have now lost their transaction fees
to the network as the penalty for not submitting plain-text data in time. In
addition, any users who do not have enough balance to pay for a transaction or
any smart-contracts that were timed out by the clearing nodes are also failed.
(We go into more detail about execution time-out in the next subsection).

The smart contracts are executed and the commit node’s block and global
database are updated to match the clearing node’s. The block is now effectively
closed and in order to make it immutable, the commit note writes the commit
hash which is a SHA256 hash of the statuses and appended information. This
commit hash is then appended with the solution hash of the new block, and
the hash of this becomes the block hash for the new block which is now on the
chain. This new completed chain is broadcast to the full network by the commit
node. This alerts the mining network to begin mining the next node, and the
clearing nodes to move the clearing window up one block.

21

2.5 Segregation of Duties and Specialization

Our proposal is built on the concepts of segregation of duty, and separation
of concerns. Segregation of duty is an accounting philosophy that no one agent
should have sole control over the lifespan of a transaction. In a traditional block
chain, the "winning" mining node has the power to read all the transactions in
full detail, select the transactions it wishes to block together, arrange them
for execution in the order it wishes, and is responsible for clearing, contract
execution and fund settling.

We believe that much power over the full life cycle of a transaction is too
much power, especially as miners are now selling that power for hundreds of
millions of dollars in profit a month. Separating the responsibility of clearing
from committing from mining allows us to allocate ownership of different life
cycles of the transaction to systems that have the specialized resources.

Mempool SHA256 Tx 2 (Gwei 3) SHA256 Tx 4 (Gwei 1) All Transactions in the
mempool are SHA256

meaning attackers can’t

game transactions
SHA256 Tx 1 (Gwei 5) SHA256 Tx 3 (Gwei 7) SHA256 Tx 5 (Gwei 9)

Separation of Concerns
Mining nodes can select
the transactions to add to

/ the blockchain

The commit node is
responsible for managing
the blockchain

.

Block 13 - Hash A213
+ SHA-256 - Failed
v' SHA-256 - Cleared
- Appended Info
< SHA-256 - Failed

Nonce 09834
Solution Hash 0063
Commit Hash AE86

\%/

\ 3 Blocks later a clearing
node has the responsibility

T of executing the block

Figure 19: In our proposal, we’ve fundamentally divorced clearing functions from mining
functions from committing.

Extant implementations of blockchains have required a single node be capable
of mining, clearing, and network operations. Furthermore, as mining has gotten
more profitable, systems have been forced to focus on hash rates to secure
the sole rights to oversee the full lifecycle of the transaction. This has made
it inaccessible for average users, concentrating the power in the hands of large
mining conglomerations with specialized hashing machines. In addition, because
a network with smart contracts like Ethereum maintains a global database for
the clearing and execution of those smart contracts, it also requires significant
amounts of memory, high network bandwidth, and the ability to quickly and
efficiently perform database updates, putting it even further outside of the reach

22

of the average consumer.

In our proposal this is no longer the case. We aim to provide an opportunity
for systems to specialize into a specific role best suited for their individual
architecture. Ultimately, we envision systems networking together to divide
duties to create highly efficient clearing nodes. As an example, a clearing node
can be set up where tasks are delegated. Incoming blocks are split by a main
system at the transaction level and then distributed to sister systems. One sister
system can hold all of the databases referencing NFTs and specialize in their
clearing, another can specialize into dealing with atomic-swaps, while another
machine maintains a full copy of the global database for cross database smart
contracts.

By eliminating the requirement that a single system needs to do it all, we
overcome the traditional limitation to block size, block resolution speed, and
storage requirements. These have all been limited in an effort to reduce the
system requirements needed to oversee the full lifecycle of a transaction. Our
proposal enables a high cadence of large blocks with complex smart contracts
thanks to separation of duties and specialization.

23

3 Summary of Advantages, Limitations, and Competitor
Solutions

We’ve designed our blockchain implementation to best address the challenges
of extent blockchains. In our research, these have been the challenges of Miner
Extractable Value (MEV), front-running attacks, and transaction throughput.
In addition, we’ve also taken advantage of our specialized nodes to drive competition
to micro-optimize our overall network. Let’s breakdown the advantages and
limitations as well as compare our proposal to the other potential solutions.

3.1 Proposal Advantages

By hashing transactions in the mempool, front-running has become massively
more difficult. It now involves attempting to predict the behavior of transactions
with imperfect information. Just like in traditional financial markets, it’s still
theoretically possible to build complex models that attempt to use historic
information to model future transactions, however now it involves significant
and genuine risk as the attacker no longer has perfect information.

Our solution to decoding these hashed transactions is to separate clearing
and mining functions. Thanks to that specialization, our proposal can support
significantly higher block sizes as the mining nodes don’t need the infrastructure
to clear or commit and the clearing nodes don’t need the infrastructure to
maintain an energy efficient hash rate. More importantly, by separating the
clearing functionality, we are no longer constrained to an arbitrary gas limit of
1 second of CPU time. Clearing nodes are likely be pools of systems, but smaller
pools should have reduced latency times which will allow them to compete for
blocks that have less complex execution requirements. Meanwhile if a block
has dozens of extremely complex smart contracts, a powerful clearing node
comprised of multiple systems will outperform the low latency smaller pools.

This specialization also allows us to engage in something no other extant
blockchain can, block by block micro-optimization of execution criteria. By
forcing the clearing nodes themselves to compete with each other, we no longer
need to centralize execution criteria such as timeouts. If, for example, a clearing
node sets its timeout window too long, it won’t be able to complete the block
if there is an infinite loop in the transactions, thus ceding it to a competing
clearing node. On the other hand, a timeout window set too short might timeout
transactions that could otherwise be completed, this would also cede the block to
a competing clearing node. These execution criteria can be left to the individual
clearing nodes to optimize in order to generate the most fee revenue by best
clearing a block. This makes our proposal significantly more user friendly than
asking a user to estimate the gas limit for a random smart contract.

24

3.2 Proposal Limitations

Unfortunately, it is unavoidable that our blockchain in its current implementation
will have a human-scale latency in transaction resolutions thanks to the clearing
window. While it will certainly be shorter than the windows for many blockchain
implementations such as Bitcoin which has a 10 minute block period, there
is a strict lower bound as users will need human time scales to submit their
transactions details. As a design choice for this implementation, we do not
implement an automated appending system such as a timelock encryption or
verifiable delay system. As of writing, effective, decentralized implementations
of time-lock encryption are still in the proof of concept stage. We plan to revisit
their implementation when they are better understood. Such a system can be
appended as an update to the commit nodes in the future and would enable us to
drastically cut the clearing window by automating the appending of plain-text
transaction details.

3.3 Competitive Solutions

Due to the severity of these issues, dozens of teams are working on their own
competitive solutions. The primary difference between our proposal and the
current competitive set is that we are fundamentally rebuilding the blockchain.
To best inform a reader on the space below we have summarized the major
projects tackling these issues at the time of writing.

The first is to allow the free bartering of order placement. This can be done
by the network itself where miners auction out on the side, the placement of
orders to augment their transaction fee revenue. This is already occurring and
is likely to accelerate even further if it is incorporated into the fundamental
structure of mining. This is called Miner Extractable Value Auction, or MEVA.
There is fierce debate as some claim this sort of side dealing will always exist
while others claim that this is essentially a bribe from front-running bots and
will end up hurting the average trader.

EDEN is a token that allows miners to monetize placement. Essentially, if
a miner places and orders transactions as per the rules of the EDEN network,
they receive EDEN tokens. Applications, bots, or traders can then essentially
pay EDEN tokens to secure a higher placement in blocks or rent out block space.
This is a private, tokenized version of MEVA.

In addition, there are several privacy tokens such as Monero, that make
the entire chain completely opaque to all outside observers. While this does
limit front-running transactions, it comes with significant regulatory and moral
challenges that are beyond the scope of this paper.

There are a wide variety of solutions that take advantage of secure regions of
the latest generation of CPUs, these are known under the brand names Intel’s

25

https://link.springer.com/article/10.1007/s10623-018-0461-x
https://eprint.iacr.org/2018/601.pdf

SGX or AMD’s SEV. Whether on blockchain or not, these solutions propose that
all transaction blocking and routing be handled in the secure enclave of the CPU.
The limitations on this are that it is not truly decentralized as it gives mining
power to users with these specialized CPUs, and more specifically centralizes
control at Intel or AMD. If these companies were to implement backdoors
into the secure enclave or a workaround was found, this would completely
compromise the security of the process instantly.

The reason all of these solutions have limitations and intelligent, distinguished
teams all working on the same issue haven’t solved it yet is that the challenge
is fundamental. In the extant blockchains, the mining node or validator has too
much power. It has full transparency and complete control over the full lifecycle
of the transaction. We believe the only effective solution is to implement a
blockchain that has ownership distributed among multiple node networks with
checks and balances to ensure there are no conflicts of interest.

4 Contact

Feel free to reach out and contact us if you have any questions or would like
to get involved.

Stardust Wealth

cryptodevelopment@stardustfunds.com

26

https://stardust.finance
https://stardust.finance

	Current Landscape and Challenges
	A Brief Summary of the Current Blockchain Mining Process
	Current Challenges

	Proposed Solution
	The Altered Mining Process
	The Clearing Window
	The New Clearing Function
	Committing
	Segregation of Duties and Specialization

	Summary of Advantages, Limitations, and Competitor Solutions
	Proposal Advantages
	Proposal Limitations
	Competitive Solutions

	Contact

